
Git your ****
together

Tim Smith
APA Seminar

A primer in modern version control

What is git?

Git is a distributed version
control system that keeps track

of snapshots of your code

• Manage updates to your files (code,
writing, etc)

• Keep track of changes across many
machines

• Use and modify existing code
• Contribute to existing projects

What is git?

Running git diff shows that now the variable rT is created with
np.ones, instead of np.zeros

• On your computer, a git repo
looks familiar: it’s just a bunch of
files

• But, by running specific git
commands we can modify and
compare changes with a “main”
version

Repository (repo) is a collection
of files for a single project

GitHub

GitHub stores your files and
provides a web interface that

integrates with git functionality

GitHub is a popular choice for hosting code
Why use GitHub?
1. It’s popular
2. It has nice features that allow for

collaboration and discussion
3. It integrates well with automated features

like code testing and package publishing

How do we use it?

• Git for personal use

• Git for collaborative use

• Special requests & discussion
• Authentication
• Filetype best practices
• I’m all spread out
• etc…

origin
main

origin
main

git clone

Git clone

github.com/timothyas/bash-envy

• Easiest to do by going to GitHub.com, and cloning from there

http://github.com/timothyas/bash-envy

origin
main

origin
main

git clone

Git clone
• Easiest to do by going to GitHub.com, and cloning from there

A generic workflow

Make edits git add
Stage (prepare) file changes

Contents:

Bugfix

git commit
Create and label a single

“commit” containing
logically related changes

git push
Push the changes to the

cloud

Git log
Note: Here I am showing the web view of commit history on one of my
repos. But it is also useful to use this command on your computer, for
instance to see where you are in a project’s history, and e.g. what
happened most recently

Click here to
See the log

online

Git log
Note: Here I am showing the web view of commit history on one of my
repos. But it is also useful to use this command on your computer, for
instance to see where you are in a project’s history, and e.g. what
happened most recently

Git-ing personal
• Helpful to think of 3 “views”

• The version in the cloud (on GitHub)
• What your computer thinks is in the cloud
• Your working copy, including any uncommitted

changes

• Origin is a commonly used “remote” label, indicating
your online version of the repo

• HEAD is the commit that you are currently working
with on your computer

• Main is the branch name
• Note: HEAD is always the same term, main and origin

are just commonly used names

HEAD
main

origin
main

local
copy

git add
git commit

git push

HEAD
main

origin
main

local
copy

git clone
git fetch origin

git merge origin main
(or rebase)

git add
git commit

git push

Git-ing personal

• git clone: get a copy of the repo
on your machine, with special files that
manage version control

• git fetch: update your computer’s
view of the cloud version (don’t change
the files!)

• git merge: update your local files so
that they look like the online version

• git rebase: an alternative to merge

HEAD
main

origin
main

local
copy

git add
git commit

git push

git pull
(Or git pull --rebase)

Git-ing personal

Shorthand
• git pull: run git fetch and git
merge together

• git pull --rebase:
run git fetch and git rebase

Git status

Here I have run git status immediately after making modifications and running git add bashrc_hera. Git status shows
us that the file bashrc_hera has been staged to be committed, and there are other changes in the file remote_alias_noaa
which is not staged for this commit. There is also an untracked file which we can see. Lastly, notice at the top, we see that “your
branch is up to date with origin/master” - this is where we see if we are ahead, behind, or up to date with the online version.

user1
origin
main

user2
origin
main

upstream
main

Multi-user projects

Forking

user1
origin
main

upstream
main

• Make your own “version” of a repo, where you
have all the editing power

• Once forked, the rest of the workflow is the
same as before

• Easiest to do on GitHub.com

• Upstream is a commonly used label for the
overarching/group remote (i.e. online repository)

git fetch upstream

git merge upstream main

http://GitHub.com

github.com/mitgcm/mitgcm

github.com/timothyas/mitgcm

Forking

http://github.com/mitgcm/mitgcm
http://github.com/mitgcm/mitgcm

Pull Requests

user1
origin
main

upstream
main

• Merge your modifications into the
upstream version

• You are requesting that they pull your
changes

• Easiest to do on GitHub.com

http://GitHub.com

upstream
main

Raising Issues
• Open a dialogue about unexpected

behavior, feature requests
• Anyone can do it on public projects
• Collaborators/maintainers can use

the issue tracker as a todo list
• Easiest to do on GitHub.com
• JEDI issue recommendations here

http://GitHub.com
http://www.apple.com

github.com/stevepny/data-driven-collab

http://github.com/mitgcm/mitgcm

origin
main

origin
main

local
copy

origin
main

local
copy

Spreading out

Authentication GitHub.com/settings/keys

• My recommendation, use
ssh keys
• Add each machine’s public

ssh key to github and never
look back
• See guide here

http://GitHub.com/settings/keys
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh

HPC+Git tips

Dealing with large files,
slurm output, etc:
• Don’t do: git add *

• Maintain a .gitignore
file

When code is spread across
many machines, using
separate branches can be
helpful

3. We create a file
called .gitignore, and tell it
to ignore all files with the

suffix .nc

1. We have the really_big_data.nc file that we want to ignore

4. Git is now ignoring the really_big_data.nc
(and now we should commit our .gitignore file!)

2. Git sees the file, and will happily scoop it up (and
eventually run into trouble with large files)

Filetype best practices

• Git is most useful for text based files (code and scripts, LaTex, markdown, yaml files,…)
• Jupyter notebooks: no problem keeping them in repos, but are difficult to version control

directly. Tools like nbdime help.
• Log, compiler output, error files (clutter) generally not recommended
• Pdf’s and images: I keep them if necessary to compile, but don’t expect nice version control
• Microsoft Powerpoint, Word, Excel documents (and apple equivalents): I don’t recommend

storing in GitHub, because usually large. I prefer keeping these in e.g. Google Drive,
Dropbox, etc.

• Binaries, data, NetCDF, zarr: No. See Git Large File Storage or figshare.com for publicly
storing large files

• See GitHub’s .gitignore templates

https://nbdime.readthedocs.io/en/latest/
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-git-large-file-storage
http://figshare.com
https://github.com/github/gitignore

What to make repos for?

My personal usage…
• bash-envy: just environment stuff for easy setup on many machines

(.bashrc, conda recipe files, vimrc, …)
• pych: PYthon scratCH work, my own scratch python package I can

import anywhere
• New repo for each new project/paper that contains latex, jupyter

notebooks, some python code to explore a contained idea
• Every time I have created “one repo to rule them all”, things got messy

http://github.com/timothyas/bash-envy
https://github.com/timothyas/pych

VERSION CONTROL
Happy hacking!

